Endotracheal tube associated bacterial infection, prevalence and
their drug susceptibility pattern in NICU

Akhatar SMS¹, Mwipopo EE², Zhao D³, Li W⁴, Rahmathullah MN⁵, Hassan MA⁶

ABSTRACT

Aim of this article is to provide an overview of modifiable and non-
modifiable factor in the development of Nosocomial Infections (NIs)
in the Neonatal Intensive Care Units (NICUs). Endotracheal tube
intubation/Mechanical ventilation is a lifesaving invasive procedure
which is associated with their own potential complications, like
ventilator associated pneumonia (VAP), sepsis, Ventilator
associated-tracheo-bronchitis(VAT), acute respiratory distress
syndrome, pulmonary embolism, Barotrauma and pulmonary edema,
which can occur among the patients receiving mechanical
ventilation. Among the above listed complication, Neonatal sepsis is
the most common and VAP is the second most common encountered
Nosocomial infection, which account for the most of the morbidity
and mortality in the NICUs and ventilated patients. PubMed, Embase
and google scholar have been searched for the articles meeting our
criteria, total fourteen articles have been used. Neither any
alterations or modifications nor any Software’s were used in this
article. In some recent research article and literature, some
strategy have been mentioned, which are resulting in better control of
Nosocomial infection due to ventilator or endotracheal tube
intubation: Gram-negative bacteria are most prevalent in the
developing countries and Gram-positive in the developed countries,
Klebsiella pneumonia, E. coli and staphylococcus aureus are the
most common reason for NIs. Increasing number of NIs and
multidrug resistance bacteria are matter of concern for
Neonatologist around the world.

Keywords: Nosocomial infection in NICUs, VAP, VAT, bacterial
prevalence, antimicrobial susceptibility

Introduction

Nosocomial infections (NIs) is the serious
problem worldwide in those neonates, who
are admitted to Neonatal intensive care
units (NICUs). It leads to higher morbidity
and mortality under the age of 28 days, and
prolonged length of hospital stay, also
increases the cost of the treatment. [1]Among the preterm and low birth weight
(VLBW less than 1500g) babies, rate of
neonatal sepsis is much higher. [2] Neonates
especially preterm and low birth weight
have immature immune system and less
efficient mucosal and cutaneous barriers, [3-
4] which makes them more prone to
acquired infections due to multiple invasive
procedures, like use of ventilator
/endotracheal tube (ETT), peripheral and
central venous lineand broad-spectrum
antimicrobials. [5]Use of ventilator increases
the risk of getting VAP by 6-20 fold with
crude mortality rate of 20%-40%, [6,7] the
rate of incidence of VAP has been
described as 3% per day for the 1st week, 2%
a day in the 2nd week and 1% a day in the coming weeks of mechanical ventilation.\[8\] Another lower respiratory tract infection due to ETT is VAT, which has similar signs and symptoms like VAP and similar diagnostic microbiological criteria based on quantitative or semi quantitative investigation of endotracheal aspirate.\[9,10\] Nosocomial infection has become a big challenge for the hospital and society as well, especially in the developing countries due to expenses during the longer hospitalstay. Incidence of nosocomial infection varies region to region, even in the same NICU at different point of time, usually incidence rate have been reported in between 18%-34% \[11,12\] and leads to 40% of neonatal death in the developing countries.\[13\] Previous report from different countries reveals that one third of the Nosocomial infections can be prevented by effective infection control protocol and active surveillance of predominant organism and their drug susceptibility pattern.\[12\]

The incidence and prevalence of neonatal sepsis in NICUS

Neonatal sepsis is defined as a clinical syndrome in an infant of 28 days or younger, which has a systemic sign of inflammation and isolation of bacterial pathogens from the bloodstream. Diagnosis and management of sepsis is a great challenge in the NICUs for the neonatologist. Neonatal sepsis happening due to Gram-positive, Gram-negative and Candida, and it has variation in a different region and even in the same NICU over the time.\[14\] (Table 1)

<table>
<thead>
<tr>
<th>STUDY NAME</th>
<th>STUDIES DESIGN</th>
<th>DIAGNOSIS</th>
<th>INCIDENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afif Ahmad et al[15]</td>
<td>Retrospective studies</td>
<td>Neonatal sepsis</td>
<td>EOS 17%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LOS 83%</td>
</tr>
<tr>
<td>D. Mohammed, O.S.E seifi et al[16]</td>
<td>Prospective cohort study</td>
<td>Neonatal sepsis</td>
<td>58%</td>
</tr>
<tr>
<td>Sally AF El-sahrig et al[17]</td>
<td>Retrospective study</td>
<td>Neonatal sepsis</td>
<td>46.40%</td>
</tr>
<tr>
<td>Yalaz M, et al[18]</td>
<td>Retrospective study</td>
<td>Neonatal sepsis</td>
<td>9.10%</td>
</tr>
<tr>
<td>Shreshta S et al[19]</td>
<td>Descriptive prospective study</td>
<td>Neonatal sepsis</td>
<td>EOS 84.08%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LOS 15.95%</td>
</tr>
<tr>
<td>EmanM.Rabieshehab El-Din et al[20]</td>
<td>Prospective study</td>
<td>Neonatal sepsis</td>
<td>EOS 44.2%</td>
</tr>
<tr>
<td>Dal-Bo K, SilvaRM, et al[21]</td>
<td>Prospective cohort study</td>
<td>Neonatal sepsis</td>
<td>15.20%</td>
</tr>
<tr>
<td>Mohammad Aqeelkhan et al[22]</td>
<td>Descriptive study</td>
<td>Neonatal sepsis</td>
<td>19.30%</td>
</tr>
</tbody>
</table>

| EOS= early onset sepsis, LOS= Late onset sepsis |

Relationship of nosocomial infection with ventilator associated pneumonia (VAP)

The centers for disease control and prevention (CDC, Atlanta, GA, USA) defines
VAP as 'a nosocomial infection diagnosed in patients undergoing Mechanical ventilation for at least 48 h'. Diagnosis of VAP requires a combination of radiological, clinical and laboratory criteria. However, CDC/NNIS criteria refer to infant younger than 1 year and do not defines specific criteria for the newborn period in term or preterm infants. In spite of this lack of specificity, most of the studies over VAP in NICUs are based on CDC criteria. Due to difficulties in getting non-contaminated sample from the infant’s airways, the CDC permits the diagnosis of ‘clinically defined pneumonia’ based on only clinical and radiological findings, without any isolated pathogen. On the other hand, isolation of pathogens without clinical and radiological sign is not diagnostic of VAP and could just represent the colonization of the airways.

The incidence of VAP is shown in table 2.

Table 2: Incidence of VAP in different published studies

<table>
<thead>
<tr>
<th>Studies</th>
<th>Design</th>
<th>Diagnosis</th>
<th>Incidence %</th>
</tr>
</thead>
<tbody>
<tr>
<td>M A badar et al</td>
<td>Prospective studies</td>
<td>VAP</td>
<td>57.10</td>
</tr>
<tr>
<td>El-kholy et al</td>
<td>Prospective studies</td>
<td>VAP</td>
<td>20.50</td>
</tr>
<tr>
<td>Yuan et al</td>
<td>Retrospective cohort study</td>
<td>VAP</td>
<td>20.10</td>
</tr>
<tr>
<td>Afjieh et al</td>
<td>Prospective cohort</td>
<td>VAP</td>
<td>17.30</td>
</tr>
<tr>
<td>Tripathi et al</td>
<td>Prospective cohort</td>
<td>VAP</td>
<td>30.60</td>
</tr>
<tr>
<td>Deng et al</td>
<td>Retrospective</td>
<td>VAP</td>
<td>33.50</td>
</tr>
</tbody>
</table>

Ventilator associated tracheobronchitis (VAT)

Lower respiratory tract is a sterile structure, generally bacteria enter here from colonized oropharynx through the lumen of the endotracheal tube or around the cuff of tube, diagnosis of VAT and VAP is bit complicated due to their similar sign and symptoms and same micro biological criteria for tracheal aspirate. In contrast to VAP, VAT does not require new and persistent infiltration over the chest radiograph and cavitation or consolidation. Developing VAT or VAP, depends on the virulence, number of Bacteria and colonization. Body has own defense mechanism against the colonization by cilia, macrophages, polymorphonuclear leukocytes and their cytokines and antibodies (IgM, IgG, and IgA) and compliment’s fixation protect from tracheal colonization to VAT or VAP.

Incidence and pathogenesis of Gram-negative and positive bacteria

Most of the studies from the developing countries reported that Gram negative bacteria is the main culprit for the NI infection in the NICUs, although their prevalence varies from one country to other, even in the same NIUC. Incidence is shown in Table 3. But klebsiella and E.coli having highest prevalence among the gram-negative and S. aureus among gram-
positive, \cite{16, 22, 29}, in contrast to developing world, developed countries having more Gram-positive bacterial infection. Group B streptococci were reported as the most common pathogens in term infant in United States by National Institute of child health and development,\cite{32} as shown the incidence in Table 4. Invasion of sterile lower respiratory tract by the colonizing bacteria in the naso-/oropharynx, Gastric fluid and tracheal secretions lead to VAT or VAP and other respiratory tract infections. However pathogens can also be transmitted through hands of healthcare workers and ventilator circuit and the biofilms of endotracheal tube.\cite{33}

Table 3: Incidence of Bacteria in different studies

<table>
<thead>
<tr>
<th>Studies</th>
<th>Gram-positive %</th>
<th>Gram-negative %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sally AF El-sahrig et al\cite{17}</td>
<td>35.70</td>
<td>75</td>
</tr>
<tr>
<td>Afif Ahmad et\cite{15}</td>
<td>66</td>
<td>16</td>
</tr>
<tr>
<td>Yalaz M et al\cite{18}</td>
<td>49.40</td>
<td>31.40</td>
</tr>
<tr>
<td>Shrestha S et all\cite{19}</td>
<td>39.36</td>
<td>60.64</td>
</tr>
<tr>
<td>Eman M.Rabie shehab El-Din et al\cite{20}</td>
<td>58.57</td>
<td>38.57</td>
</tr>
</tbody>
</table>

Table 4: Incidence of individual bacteria in the published articles included in our study

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Shreshta et al\cite{19}</th>
<th>Tripathi et al\cite{29}</th>
<th>Afif Ahmad et al\cite{15}</th>
<th>Eman M.Rabie shehab El-Din et al</th>
<th>Yalaz M et al\cite{18}</th>
<th>D.Mohammed OSE seifi et al\cite{16}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klebsiella Pneumoniae</td>
<td>28.72%</td>
<td>32.87%</td>
<td>21.40%</td>
<td>14.29%</td>
<td>10.50%</td>
<td>34.20%</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>6.38%</td>
<td>23.28%</td>
<td>21.40%</td>
<td>2.86%</td>
<td>2.30%</td>
<td>11.20%</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>9.57%</td>
<td>10.95%</td>
<td>17.30%</td>
<td>1.43%</td>
<td>4.70%</td>
<td>14.90%</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>5.30%</td>
<td>17.80%</td>
<td>7.10%</td>
<td>5.00%</td>
<td>2.30%</td>
<td>-</td>
</tr>
<tr>
<td>CONS</td>
<td>9.57%</td>
<td>6.84%</td>
<td>7.10%</td>
<td>52.86%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S.aureus</td>
<td>18.10%</td>
<td>2.73%</td>
<td>14.30%</td>
<td>2.14%</td>
<td>13%</td>
<td>26.10%</td>
</tr>
<tr>
<td>Enterobacter</td>
<td>3.20%</td>
<td>2.73%</td>
<td>-</td>
<td>-</td>
<td>8.20%</td>
<td>-</td>
</tr>
<tr>
<td>Streptococcus</td>
<td>3.20%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.70%</td>
</tr>
</tbody>
</table>

CONS = coagulase-negative Staphylococci

Risk factor and prevention strategy
NIs depends on multiple factors like prematurity, Low birth-weight and Days of mechanical ventilation (MV). Extremely low birth-weight neonates need prolonged use of MV, which is an independent risk factor for developing VAP,\cite{28} Other contributing factors in developing VAP and Neonatal sepsis are immature immune system of neonates, re-intubation, primary blood...
stream infection, prior antibiotics use, sedation parenteral nutrition, endo-tracheal suctioning peripheral intravenous line and Genetic syndrome. [34]

Following strategy have been tested in the prevention of NIs.

Hand washing
A ten second of hand washing prior to touch a patient and after, have been shown a significant reduction in the rate of transmission of infection by the health worker. A previous surveillance intervention with NICU patients for 2 years by increased hands hygiene compliance (from 43 to 80%) significantly decreases the incidence of respiratory infection from 3.35 to 1.06 infection per 1,000 patient days. [35]

Frequent hand washing with or even without any antiseptic containing soap has shown good control of microbial flora over the hands. Any alcohol containing product or chlorhexidine containing soap can be used for disinfection.

Planed extubation
Re-intubation increases the chance of aspiration so clinician must calculate the benefit of extubation and risk of prolonged ventilation. [36]

Antisepetic for skin
Use of antiseptic over the skin before any invasive procedure, like venous puncture, central line and catheter has shown significant reduction of infection related to these procedures.

Bed of Head elevation and lateral position
Putting of head slightly higher to abdomen reduces the chance of aspiration of gastric content. Several studies showed that elevation of bed head up to 45 degree [37] or semi-recumbent head position reduces the VAP significantly in adult. It is clear now by different studies that supine position should be avoided in intubated patients, degree of elevation still remains controversial, but clinical practice guideline now recommend the elevation of more than 30 degree is protective against aspiration. [37]

Types of ETT
There is no specific recommendation for newborn infant about types of ETT and sub-glottic suction. However CDC and healthcare infection control advisory committee suggest the use of ETT with dorsal lumens to allow drainage of respiratory secretion, oro-tracheal instead of naso-tracheal, types of ETT being used with regard to Uncuffed and cuffed. Uncuffed one being traditionally used since many years but studies suggest that it has increased incidence of VAP, in other hand cuffed one has less need of ETT changes and stridor after extubation but need prolonged ventilation. [38] In the study, machado et al. [39] shows that ETT with nano-modified coating apparently reduces the incidence of VAP through preventing biofilm formation and colonizing of tube through free radical destruction and replacement of respiratory circuit only if they are contaminated. [40]

Immunoprophylaxis
Preterm infants are already have reduced endogenous synthesis of immunoglobulin G and less trans-placental transfer of Immunoglobulin make more prone to neonates for NIs. Ohlsson and lacy [41] meta-analysis showed that prophylactic use of Intravenous immunoglobulin (IVIG) reduce the incidence of sepsis by 3% but there is no
any reduction in mortality rate, therefore, use of IVIG benefit is marginal so cost should be considered before using. Granulocyte colony stimulating factor (G-CSF) and Granulocyte-macrophage colony stimulating factors (GM-CSF) are recombinant hematopoietic cytokines should be considered which boost up the host defense immune system against sepsis by increasing circulating neutrophils and to augment the bactericidal activity of neutrophils and macrophage against pathogens. Some studies showed significant decrease in sepsis, but further more evidence based studies are needed. [42]

Control of premature birth and Nutrition
Term delivery and control of premature delivery will decrease the sepsis significantly as studies showed that preterm infant has high risk of sepsis. Maintenance of proper nutrition and no alteration of hyper alimentation solutions after preparation, early enteral feeding and specially promotion of use of human milk have much beneficiary effect and reduction of sepsis and better boost up of host defense system. Probiotics have been used in some studies which show that critically ill patients who received lactobacillus rhamnosus had significantly less cases of microbiologically confirmed case of VAP and clostridium difficile associated diarrhea. [43]

Sampling techniques
Many types of sampling techniques have been applied to avoid the contamination of the sample, some technique like Broncho-alveolar lavage (BAL) need a trained medical personal for the effective result as it is an invasive technique. In contrast to this procedure, tracheal aspirate (TA) is a noninvasive technique which does not require a specialized trainee and easy to use, but has got high change of over diagnosis and resulting into the irrational use of antibiotics. [44] In addition to this, Protected specimen brush(PSB) have been largely adopted for sample collection in VAP suspected adults, it is a very reliable technique and has less chance of contamination which also meet the standard of microbiological sampling for respiratory airways. [45] BAL and PSB, both techniques are quite safe, having minor complication such as minimal bronchial hemorrhage, a moderate increase in oxygen and transient fever also reported. [46] Due to the smaller diameter of ETT in neonates, unfortunately PSB and Bronchoscopic BAL cannot be performed in neonates so in the neonates Blind-protected BAL seems to be the best choice for reliable sampling. [47]

Antimicrobial susceptibility pattern in our reviewed articles
Antimicrobial susceptibility varies significantly according to their use in the hospital in a one region and in the different department of the same hospital. It is totally depends of the sensible use of antimicrobial and knowledge of current prevalence of pathogen. Here are some common medicine, which being used specially in the NICUs around the world and their susceptibility pattern. Beta-lactamantibiotic’s sensitivity decreasing as per most of the studies [48] and methicillin resistant coagulase negative staphylococcus (MRCoNS) are most common emerging bacteria in the ICU. A Multidrug resistant Gram negative bacterium has been reported from NICUs around the world. [49, 50] Table 5, illustrates the percentage range
of sensitivity of four Bacteria in these five different studies.

<table>
<thead>
<tr>
<th>Pseudomonas aeruginosa</th>
<th>E.coli</th>
<th>Klebsiella pneumonia</th>
<th>S.aureus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotic</td>
<td>Sensitivity (%)</td>
<td>Sensitivity (%)</td>
<td>Sensitivity (%)</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>7-22</td>
<td>0-50</td>
<td>0</td>
</tr>
<tr>
<td>Amikacin</td>
<td>66-80</td>
<td>14-100</td>
<td>100</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>5-66</td>
<td>0</td>
<td>93-100</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>83-100</td>
<td>0-45</td>
<td>-</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>55-88</td>
<td>0-50</td>
<td>-</td>
</tr>
<tr>
<td>Meropenem</td>
<td>91-97</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Cefazidime</td>
<td>50-83</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cefepime</td>
<td>71-82</td>
<td>-</td>
<td>93-100</td>
</tr>
<tr>
<td>Imepenem</td>
<td>-</td>
<td>42-100</td>
<td>-</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>-</td>
<td>0-25</td>
<td>-</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>-</td>
<td>41-60</td>
<td>93-100</td>
</tr>
<tr>
<td>Penicillin</td>
<td>-</td>
<td>0-50</td>
<td>-</td>
</tr>
<tr>
<td>Amox/cv</td>
<td>-</td>
<td>50-100</td>
<td>-</td>
</tr>
<tr>
<td>Pipira/TZ</td>
<td>-</td>
<td>-</td>
<td>87-100</td>
</tr>
</tbody>
</table>

Conclusion

Neonatal sepsis and VAP is a most common and second most common NIs among the neonates. Prematurity, low birth-weight and Prolonged MV are the major reason, along with peripheral and central catheterization, Crowded NICU and Immature immune system of newborn. Frequent surveillance and antimicrobial susceptibility test could provide a better control over NIs and Multidrug resistance bacteria. Therefore good weaning protocol, proper patients care and less invasive investigation procedure can bring down the rate of NIs and mortality in this fragile age group. My aim of this review was to draw an attention over the modifiable factors and strategy to control the progression NIs and antimicrobial resistance.

References

23. Centers for Disease Control and Prevention: Criteria for defining

40. Tablan OC, Anderson LJ, Besser R, Bridges C, Hajjeh R. Guidelines for...
preventing healthcare-associated pneumonia, 2003: recommendations of
CDC and the Healthcare Infection
Control Practices Advisory Committee
41. Ohlsson A, Lacy JB. Intravenous
immunoglobulin for preventing
infection in preterm and or low birth
weight infants. The Cochrane Library
2013, 7.Art. Art. No.: CD000361. DOI:
10.1002/14651858.CD000361.pub3.
42. Carr R, Modi N, Dore CJ, El-Rifai R, Lindo
D. A randomized, controlled trial of
prophylactic granulocyte macrophage
colony-stimulating factor in human
newborns less than 32 weeks gestation.
43. Morrow LE, Kollef MH, Casale TB.
Probiotic prophylaxis of ventilator-
associated pneumonia: a blinded,
randomized, controlled trial. Am J
Respir Crit Care Med 2010;182:1058–64.
44. Morris AC, Kefala K, Simpson AJ.
Evaluation of the effect of diagnostic
methodology on the reported incidence
of ventilator-associated pneumonia.
45. Sachdev A, Chugh K, Sethi M.
Diagnosis of ventilator-associated pneumonia in
children in resource-limited setting: a
comparative study of bronchoscopic and
46. Labenne M, Poyart C, Rambaud C.
Blind protected specimen brush and broncho-
alveolar lavage in ventilated children.
47. Cernada M, Aguar M, Brugada M.
Ventilator-associated pneumonia in
newborn infants diagnosed with an
invasive broncho-alveolar lavage
technique: a prospective observational
study. Pediatric Crit Care Med 2013;
14:55–61.
48. Woodford N, Ward ME, Kaufmann ME.
Community and hospital spread of
Escherichia coli producing CTX-
Mextended-spectrum b-lactamases in
the UK. J Antimicrob Chemother 2004;
54:735–43.
49. Mcdonald LC, Walker M, Carson L.
Outbreak of Acinetobacter spp.
Bloodstream infections in a nursery
associated with contaminated aerosols
and air conditioners. Pediatr Infect Dis
50. Moolenaar RL, Crutcher JM, Sanjaquin
VH. A prolonged outbreak of
Pseudomonas aeruginosa in a neonatal
intensive care unit: did staff fingernails
play a role in disease transmission?
Infect Control Hospital Epidemiology

Source of Support: Nil
Conflict of Interest: No